Senin, 27 Februari 2017

Pemanasan Global


Pemanasan global atau Global Warming adalah adanya proses peningkatan suhu rata-rata atmosferlaut, dan daratan Bumi.
Suhu rata-rata global pada permukaan Bumi telah meningkat 0.74 ± 0.18 °C (1.33 ± 0.32 °F) selama seratus tahun terakhir. Intergovernmental Panel on Climate Change (IPCC) menyimpulkan bahwa, "sebagian besar peningkatan suhu rata-rata global sejak pertengahan abad ke-20 kemungkinan besar disebabkan oleh meningkatnya konsentrasi gas-gas rumah kaca akibat aktivitas manusia"[1] melalui efek rumah kaca. Kesimpulan dasar ini telah dikemukakan oleh setidaknya 30 badan ilmiah dan akademik, termasuk semua akademi sains nasional dari negara-negara G8. Akan tetapi, masih terdapat beberapa ilmuwan yang tidak setuju dengan beberapa kesimpulan yang dikemukakan IPCC tersebut.
Model iklim yang dijadikan acuan oleh projek IPCC menunjukkan suhu permukaan global akan meningkat 1.1 hingga 6.4 °C (2.0 hingga 11.5 °F) antara tahun 1990 dan 2100.[1] Perbedaan angka perkiraan itu disebabkan oleh penggunaan skenario-skenario berbeda mengenai emisi gas-gas rumah kaca di masa mendatang, serta model-model sensitivitas iklim yang berbeda. Walaupun sebagian besar penelitian terfokus pada periode hingga 2100, pemanasan dan kenaikan muka air laut diperkirakan akan terus berlanjut selama lebih dari seribu tahun walaupun tingkat emisi gas rumah kaca telah stabil.[1] Ini mencerminkan besarnya kapasitas panas dari lautan.
Meningkatnya suhu global diperkirakan akan menyebabkan perubahan-perubahan yang lain seperti naiknya permukaan air laut, meningkatnya intensitas fenomena cuaca yang ekstrem,[2] serta perubahan jumlah dan pola presipitasi. Akibat-akibat pemanasan global yang lain adalah terpengaruhnya hasil pertanian, hilangnya gletser, dan punahnya berbagai jenis hewan.
Beberapa hal-hal yang masih diragukan para ilmuwan adalah mengenai jumlah pemanasan yang diperkirakan akan terjadi di masa depan, dan bagaimana pemanasan serta perubahan-perubahan yang terjadi tersebut akan bervariasi dari satu daerah ke daerah yang lain. Hingga saat ini masih terjadi perdebatan politik dan publik di dunia mengenai apa, jika ada, tindakan yang harus dilakukan untuk mengurangi atau membalikkan pemanasan lebih lanjut atau untuk beradaptasi terhadap konsekuensi-konsekuensi yang ada. Sebagian besar pemerintahan negara-negara di dunia telah menandatangani dan meratifikasi Protokol Kyoto, yang mengarah pada pengurangan emisi gas-gas rumah kaca.

I. Penyebab pemanasan global

1.1 Efek rumah kaca

Segala sumber energi yang terdapat di Bumi berasal dari Matahari. Sebagian besar energi tersebut berbentuk radiasi gelombang pendek, termasuk cahaya tampak. Ketika energi ini tiba permukaan Bumi, ia berubah dari cahaya menjadi panas yang menghangatkan Bumi. Permukaan Bumi, akan menyerap sebagian panas dan memantulkan kembali sisanya. Sebagian dari panas ini berwujud radiasi infra merah gelombang panjang ke angkasa luar. Namun sebagian panas tetap terperangkap di atmosfer bumi akibat menumpuknya jumlah gas rumah kaca antara lain uap airkarbon dioksidasulfur dioksida dan metana yang menjadi perangkap gelombang radiasi ini. Gas-gas ini menyerap dan memantulkan kembali radiasi gelombang yang dipancarkan Bumi dan akibatnya panas tersebut akan tersimpan di permukaan Bumi. Keadaan ini terjadi terus menerus sehingga mengakibatkan suhu rata-rata tahunan bumi terus meningkat.
Gas-gas tersebut berfungsi sebagaimana gas dalam rumah kaca. Dengan semakin meningkatnya konsentrasi gas-gas ini di atmosfer, semakin banyak panas yang terperangkap di bawahnya.
Efek rumah kaca ini sangat dibutuhkan oleh segala makhluk hidup yang ada di bumi, karena tanpanya, planet ini akan menjadi sangat dingin. Dengan suhu rata-rata sebesar 15 °C (59 °F), bumi sebenarnya telah lebih panas 33 °C (59 °F) dari suhunya semula, jika tidak ada efek rumah kaca suhu bumi hanya -18 °C sehingga es akan menutupi seluruh permukaan Bumi. Akan tetapi sebaliknya, apabila gas-gas tersebut telah berlebihan di atmosfer, akan mengakibatkan pemanasan global.

1.2 Efek umpan balik

Anasir penyebab pemanasan global juga dipengaruhi oleh berbagai proses umpan balik yang dihasilkannya. Sebagai contoh adalah pada penguapan air. Pada kasus pemanasan akibat bertambahnya gas-gas rumah kaca seperti CO2, pemanasan pada awalnya akan menyebabkan lebih banyaknya air yang menguap ke atmosfer. Karena uap air sendiri merupakan gas rumah kaca, pemanasan akan terus berlanjut dan menambah jumlah uap air di udara sampai tercapainya suatu kesetimbangan konsentrasi uap air. Efek rumah kaca yang dihasilkannya lebih besar bila dibandingkan oleh akibat gas CO2 sendiri. (Walaupun umpan balik ini meningkatkan kandungan air absolut di udara, kelembaban relatif udara hampir konstan atau bahkan agak menurun karena udara menjadi menghangat).[3] Umpan balik ini hanya berdampak secara perlahan-lahan karena CO2 memiliki usia yang panjang di atmosfer.
Efek umpan balik karena pengaruh awan sedang menjadi objek penelitian saat ini. Bila dilihat dari bawah, awan akan memantulkan kembali radiasi infra merah ke permukaan, sehingga akan meningkatkan efek pemanasan. Sebaliknya bila dilihat dari atas, awan tersebut akan memantulkan sinar Matahari dan radiasi infra merah ke angkasa, sehingga meningkatkan efek pendinginan. Apakah efek netto-nya menghasilkan pemanasan atau pendinginan tergantung pada beberapa detail-detail tertentu seperti tipe dan ketinggian awan tersebut. Detail-detail ini sulit direpresentasikan dalam model iklim, antara lain karena awan sangat kecil bila dibandingkan dengan jarak antara batas-batas komputasional dalam model iklim (sekitar 125 hingga 500 km untuk model yang digunakan dalam Laporan Pandangan IPCC ke Empat). Walaupun demikian, umpan balik awan berada pada peringkat dua bila dibandingkan dengan umpan balik uap air dan dianggap positif (menambah pemanasan) dalam semua model yang digunakan dalam Laporan Pandangan IPCC ke Empat.[3]
Umpan balik penting lainnya adalah hilangnya kemampuan memantulkan cahaya (albedo) oleh es.[4] Ketika suhu global meningkat, es yang berada di dekat kutub mencair dengan kecepatan yang terus meningkat. Bersamaan dengan melelehnya es tersebut, daratan atau air di bawahnya akan terbuka. Baik daratan maupun air memiliki kemampuan memantulkan cahaya lebih sedikit bila dibandingkan dengan es, dan akibatnya akan menyerap lebih banyak radiasi Matahari. Hal ini akan menambah pemanasan dan menimbulkan lebih banyak lagi es yang mencair, menjadi suatu siklus yang berkelanjutan.
Umpan balik positif akibat terlepasnya CO2 dan CH4 dari melunaknya tanah beku (permafrost) adalah mekanisme lainnya yang berkontribusi terhadap pemanasan. Selain itu, es yang meleleh juga akan melepas CH4 yang juga menimbulkan umpan balik positif.
Kemampuan lautan untuk menyerap karbon juga akan berkurang bila ia menghangat, hal ini diakibatkan oleh menurunya tingkat nutrien pada zona mesopelagic sehingga membatasi pertumbuhan diatom daripada fitoplankton yang merupakan penyerap karbon yang rendah.[5]

1.3 Variasi Matahari 

Terdapat hipotesa yang menyatakan bahwa variasi dari Matahari, dengan kemungkinan diperkuat oleh umpan balik dari awan, dapat memberi kontribusi dalam pemanasan saat ini.[6]Perbedaan antara mekanisme ini dengan pemanasan akibat efek rumah kaca adalah meningkatnya aktivitas Matahari akan memanaskan stratosfer sebaliknya efek rumah kaca akan mendinginkan stratosfer. Pendinginan stratosfer bagian bawah paling tidak telah diamati sejak tahun 1960,[7] yang tidak akan terjadi bila aktivitas Matahari menjadi kontributor utama pemanasan saat ini. (Penipisan lapisan ozon juga dapat memberikan efek pendinginan tersebut tetapi penipisan tersebut terjadi mulai akhir tahun 1970-an.) Fenomena variasi Matahari dikombinasikan dengan aktivitas gunung berapi mungkin telah memberikan efek pemanasan dari masa pra-industri hingga tahun 1950, serta efek pendinginan sejak tahun 1950.[8][9]
Ada beberapa hasil penelitian yang menyatakan bahwa kontribusi Matahari mungkin telah diabaikan dalam pemanasan global. Dua ilmuwan dari Duke University memperkirakan bahwa Matahari mungkin telah berkontribusi terhadap 45-50% peningkatan suhu rata-rata global selama periode 1900-2000, dan sekitar 25-35% antara tahun 1980 dan 2000.[10] Stott dan rekannya mengemukakan bahwa model iklim yang dijadikan pedoman saat ini membuat perkiraan berlebihan terhadap efek gas-gas rumah kaca dibandingkan dengan pengaruh Matahari; mereka juga mengemukakan bahwa efek pendinginan dari debu vulkanik dan aerosol sulfat juga telah dipandang remeh.[11] Walaupun demikian, mereka menyimpulkan bahwa bahkan dengan meningkatkan sensitivitas iklim terhadap pengaruh Matahari sekalipun, sebagian besar pemanasan yang terjadi pada dekade-dekade terakhir ini disebabkan oleh gas-gas rumah kaca.
Pada tahun 2006, sebuah tim ilmuwan dari Amerika SerikatJerman dan Swiss menyatakan bahwa mereka tidak menemukan adanya peningkatan tingkat "keterangan" dari Matahari pada seribu tahun terakhir ini. Siklus Matahari hanya memberi peningkatan kecil sekitar 0,07% dalam tingkat "keterangannya" selama 30 tahun terakhir. Efek ini terlalu kecil untuk berkontribusi terhadap pemansan global.[12][13] Sebuah penelitian oleh Lockwood dan Fröhlich menemukan bahwa tidak ada hubungan antara pemanasan global dengan variasi Matahari sejak tahun 1985, baik melalui variasi dari output Matahari maupun variasi dalam sinar kosmis.[14]


2. Mengukur pemanasan global

Hasil pengukuran konsentrasi CO2 di Mauna Loa
Pada awal 1896, para ilmuwan beranggapan bahwa membakar bahan bakar fosil akan mengubah komposisi atmosfer dan dapat meningkatkan suhu rata-rata global. Hipotesis ini dikonfirmasi tahun 1957 ketika para peneliti yang bekerja pada program penelitian global yaitu International Geophysical Year, mengambil sampel atmosfer dari puncak gunung Mauna Loa di Hawai.
Hasil pengukurannya menunjukkan terjadi peningkatan konsentrasi karbon dioksida di atmosfer. Setelah itu, komposisi dari atmosfer terus diukur dengan cermat. Data-data yang dikumpulkan menunjukkan bahwa memang terjadi peningkatan konsentrasi dari gas-gas rumah kaca di atmosfer.
Para ilmuwan juga telah lama menduga bahwa iklim global semakin menghangat, tetapi mereka tidak mampu memberikan bukti-bukti yang tepat. Suhu terus bervariasi dari waktu ke waktu dan dari lokasi yang satu ke lokasi lainnya. Perlu bertahun-tahun pengamatan iklim untuk memperoleh data-data yang menunjukkan suatu kecenderungan (trend) yang jelas. Catatan pada akhir 1980-an agak memperlihatkan kecenderungan penghangatan ini, akan tetapi data statistik ini hanya sedikit dan tidak dapat dipercaya.
Stasiun cuaca pada awalnya, terletak dekat dengan daerah perkotaan sehingga pengukuran suhu akan dipengaruhi oleh panas yang dipancarkan oleh bangunan dan kendaraan dan juga panas yang disimpan oleh material bangunan dan jalan. Sejak 1957, data-data diperoleh dari stasiun cuaca yang terpercaya (terletak jauh dari perkotaan), serta dari satelit. Data-data ini memberikan pengukuran yang lebih akurat, terutama pada 70 persen permukaan planet yang tertutup lautan. Data-data yang lebih akurat ini menunjukkan bahwa kecenderungan menghangatnya permukaan Bumi benar-benar terjadi. Jika dilihat pada akhir abad ke-20, tercatat bahwa sepuluh tahun terhangat selama seratus tahun terakhir terjadi setelah tahun 1980, dan tiga tahun terpanas terjadi setelah tahun 1990, dengan 1998 menjadi yang paling panas.
Dalam laporan yang dikeluarkannya tahun 2001, Intergovernmental Panel on Climate Change (IPCC) menyimpulkan bahwa suhu udara global telah meningkat 0,6 derajat Celsius (1 derajat Fahrenheit) sejak 1861. Panel setuju bahwa pemanasan tersebut terutama disebabkan oleh aktivitas manusia yang menambah gas-gas rumah kaca ke atmosfer. IPCC memprediksi peningkatan suhu rata-rata global akan meningkat 1.1 hingga 6.4 °C (2.0 hingga 11.5 °F) antara tahun 1990 dan 2100.
IPCC panel juga memperingatkan, bahwa meskipun konsentrasi gas di atmosfer tidak bertambah lagi sejak tahun 2100, iklim tetap terus menghangat selama periode tertentu akibat emisi yang telah dilepaskan sebelumnya. karbon dioksida akan tetap berada di atmosfer selama seratus tahun atau lebih sebelum alam mampu menyerapnya kembali.[15]
Jika emisi gas rumah kaca terus meningkat, para ahli memprediksi, konsentrasi karbondioksioda di atmosfer dapat meningkat hingga tiga kali lipat pada awal abad ke-22 bila dibandingkan masa sebelum era industri. Akibatnya, akan terjadi perubahan iklim secara dramatis. Walaupun sebenarnya peristiwa perubahan iklim ini telah terjadi beberapa kali sepanjang sejarah Bumi, manusia akan menghadapi masalah ini dengan risiko populasi yang sangat besar.


3. Model iklim

Perhitungan pemanasan global pada tahun 2001 dari beberapa model iklim berdasarkan scenario SRES A2, yang mengasumsikan tidak ada tindakan yang dilakukan untuk mengurangi emisi.
Para ilmuwan telah mempelajari pemanasan global berdasarkan model-model computer berdasarkan prinsip-prinsip dasar dinamikan fluida, transfer radiasi, dan proses-proses lainya, dengan beberapa penyederhanaan disebabkan keterbatasan kemampuan komputer. Model-model ini memprediksikan bahwa penambahan gas-gas rumah kaca berefek pada iklim yang lebih hangat.[16] Walaupun digunakan asumsi-asumsi yang sama terhadap konsentrasi gas rumah kaca di masa depan, sensitivitas iklimnya masih akan berada pada suatu rentang tertentu.
Dengan memasukkan unsur-unsur ketidakpastian terhadap konsentrasi gas rumah kaca dan pemodelan iklim, IPCC memperkirakan pemanasan sekitar 1.1 °C hingga 6.4 °C (2.0 °F hingga 11.5 °F) antara tahun 1990 dan 2100.[1] Model-model iklim juga digunakan untuk menyelidiki penyebab-penyebab perubahan iklim yang terjadi saat ini dengan membandingkan perubahan yang teramati dengan hasil prediksi model terhadap berbagai penyebab, baik alami maupun aktivitas manusia.
Model iklim saat ini menghasilkan kemiripan yang cukup baik dengan perubahan suhu global hasil pengamatan selama seratus tahun terakhir, tetapi tidak mensimulasi semua aspek dari iklim.[17] Model-model ini tidak secara pasti menyatakan bahwa pemanasan yang terjadi antara tahun 1910 hingga 1945 disebabkan oleh proses alami atau aktivitas manusia; akan tetapi; mereka menunjukkan bahwa pemanasan sejak tahun 1975 didominasi oleh emisi gas-gas yang dihasilkan manusia.
Sebagian besar model-model iklim, ketika menghitung iklim di masa depan, dilakukan berdasarkan skenario-skenario gas rumah kaca, biasanya dari Laporan Khusus terhadap Skenario Emisi (Special Report on Emissions Scenarios / SRES) IPCC. Yang jarang dilakukan, model menghitung dengan menambahkan simulasi terhadap siklus karbon; yang biasanya menghasilkan umpan balik yang positif, walaupun responnya masih belum pasti (untuk skenario A2 SRES, respon bervariasi antara penambahan 20 dan 200 ppm CO2). Beberapa studi-studi juga menunjukkan beberapa umpan balik positif.[18][19][20]
Pengaruh awan juga merupakan salah satu sumber yang menimbulkan ketidakpastian terhadap model-model yang dihasilkan saat ini, walaupun sekarang telah ada kemajuan dalam menyelesaikan masalah ini.[21] Saat ini juga terjadi diskusi-diskusi yang masih berlanjut mengenai apakah model-model iklim mengesampingkan efek-efek umpan balik dan tak langsung dari variasi Matahari.


4. Dampak pemanasan global

Para ilmuwan menggunakan model komputer dari suhu, pola presipitasi, dan sirkulasi atmosfer untuk mempelajari pemanasan global. Berdasarkan model tersebut, para ilmuwan telah membuat beberapa prakiraan mengenai dampak pemanasan global terhadap cuaca, tinggi permukaan air laut, pantaipertanian, kehidupan hewan liar dan kesehatan manusia.

4.1 Iklim Mulai Tidak Stabil

Para ilmuwan memperkirakan bahwa selama pemanasan global, daerah bagian Utara dari belahan Bumi Utara (Northern Hemisphere) akan memanas lebih dari daerah-daerah lain di Bumi. Akibatnya, gunung-gunung es akan mencair dan daratan akan mengecil. Akan lebih sedikit es yang terapung di perairan Utara tersebut. Daerah-daerah yang sebelumnya mengalami salju ringan, mungkin tidak akan mengalaminya lagi. Pada pegunungan di daerah subtropis, bagian yang ditutupi salju akan semakin sedikit serta akan lebih cepat mencair. Musim tanam akan lebih panjang di beberapa area. Suhu pada musim dingin dan malam hari akan cenderung untuk meningkat.
Daerah hangat akan menjadi lebih lembab karena lebih banyak air yang menguap dari lautan. Para ilmuwan belum begitu yakin apakah kelembaban tersebut malah akan meningkatkan atau menurunkan pemanasan yang lebih jauh lagi. Hal ini disebabkan karena uap air merupakan gas rumah kaca, sehingga keberadaannya akan meningkatkan efek insulasi pada atmosfer. Akan tetapi, uap air yang lebih banyak juga akan membentuk awan yang lebih banyak, sehingga akan memantulkan cahaya matahari kembali ke angkasa luar, dimana hal ini akan menurunkan proses pemanasan (lihat siklus air). Kelembaban yang tinggi akan meningkatkan curah hujan, secara rata-rata, sekitar 1 persen untuk setiap derajat Fahrenheit pemanasan. (Curah hujan di seluruh dunia telah meningkat sebesar 1 persen dalam seratus tahun terakhir ini)[22]Badai akan menjadi lebih sering. Selain itu, air akan lebih cepat menguap dari tanah. Akibatnya beberapa daerah akan menjadi lebih kering dari sebelumnya. Angin akan bertiup lebih kencang dan mungkin dengan pola yang berbeda. Topan badai (hurricane) yang memperoleh kekuatannya dari penguapan air, akan menjadi lebih besar. Berlawanan dengan pemanasan yang terjadi, beberapa periode yang sangat dingin mungkin akan terjadi. Pola cuaca menjadi tidak terprediksi dan lebih ekstrem.

4.2 Peningkatan permukaan laut

Perubahan tinggi rata-rata muka laut diukur dari daerah dengan lingkungan yang stabil secara geologi.
Ketika atmosfer menghangat, lapisan permukaan lautan juga akan menghangat, sehingga volumenya akan membesar dan menaikkan tinggi permukaan laut. Pemanasan juga akan mencairkan banyak es di kutub, terutama sekitar Greenland, yang lebih memperbanyak volume air di laut. Tinggi muka laut di seluruh dunia telah meningkat 10 – 25 cm (4 - 10 inchi) selama abad ke-20, dan para ilmuwan IPCC memprediksi peningkatan lebih lanjut 9 – 88 cm (4 - 35 inchi) pada abad ke-21.
Perubahan tinggi muka laut akan sangat memengaruhi kehidupan di daerah pantai. Kenaikan 100 cm (40 inchi) akan menenggelamkan 6 persen daerah Belanda, 17,5 persen daerah Bangladesh, dan banyak pulau-pulau. Erosi dari tebing, pantai, dan bukit pasir akan meningkat. Ketika tinggi lautan mencapai muara sungai, banjir akibat air pasang akan meningkat di daratan. Negara-negara kaya akan menghabiskan dana yang sangat besar untuk melindungi daerah pantainya, sedangkan negara-negara miskin mungkin hanya dapat melakukan evakuasi dari daerah pantai.
Bahkan sedikit kenaikan tinggi muka laut akan sangat memengaruhi ekosistem pantai. Kenaikan 50 cm (20 inchi) akan menenggelamkan separuh dari rawa-rawa pantai di Amerika Serikat. Rawa-rawa baru juga akan terbentuk, tetapi tidak di area perkotaan dan daerah yang sudah dibangun. Kenaikan muka laut ini akan menutupi sebagian besar dari Florida Everglades.

4.3 Suhu global cenderung meningkat

Orang mungkin beranggapan bahwa Bumi yang hangat akan menghasilkan lebih banyak makanan dari sebelumnya, tetapi hal ini sebenarnya tidak sama di beberapa tempat. Bagian Selatan Kanada, sebagai contoh, mungkin akan mendapat keuntungan dari lebih tingginya curah hujan dan lebih lamanya masa tanam. Di lain pihak, lahan pertanian tropis semi kering di beberapa bagian Afrika mungkin tidak dapat tumbuh. Daerah pertanian gurun yang menggunakan air irigasi dari gunung-gunung yang jauh dapat menderita jika snowpack (kumpulan salju) musim dingin, yang berfungsi sebagai reservoir alami, akan mencair sebelum puncak bulan-bulan masa tanam. Tanaman pangan dan hutan dapat mengalami serangan serangga dan penyakit yang lebih hebat.

4.4 Gangguan ekologis

Hewan dan tumbuhan menjadi makhluk hidup yang sulit menghindar dari efek pemanasan ini karena sebagian besar lahan telah dikuasai manusia. Dalam pemanasan global, hewan cenderung untuk bermigrasi ke arah kutub atau ke atas pegunungan. Tumbuhan akan mengubah arah pertumbuhannya, mencari daerah baru karena habitat lamanya menjadi terlalu hangat. Akan tetapi, pembangunan manusia akan menghalangi perpindahan ini. Spesies-spesies yang bermigrasi ke utara atau selatan yang terhalangi oleh kota-kota atau lahan-lahan pertanian mungkin akan mati. Beberapa tipe spesies yang tidak mampu secara cepat berpindah menuju kutub mungkin juga akan musnah.

4.5 Dampak sosial dan politik

Perubahan cuaca dan lautan dapat mengakibatkan munculnya penyakit-penyakit yang berhubungan dengan panas (heat stroke) dan kematian. Temperatur yang panas juga dapat menyebabkan gagal panen sehingga akan muncul kelaparan dan malnutrisi. Perubahan cuaca yang ekstrem dan peningkatan permukaan air laut akibat mencairnya es di kutub utara dapat menyebabkan penyakit-penyakit yang berhubungan dengan bencana alam (banjir, badai dan kebakaran) dan kematian akibat trauma. Timbulnya bencana alam biasanya disertai dengan perpindahan penduduk ke tempat-tempat pengungsian dimana sering muncul penyakit, seperti: diaremalnutrisidefisiensi mikronutrien, trauma psikologis, penyakit kulit, dan lain-lain.
Pergeseran ekosistem dapat memberi dampak pada penyebaran penyakit melalui air (Waterborne diseases) maupun penyebaran penyakit melalui vektor (vector-borne diseases). Seperti meningkatnya kejadian Demam Berdarah karena munculnya ruang (ekosistem) baru untuk nyamuk ini berkembang biak. Dengan adamya perubahan iklim ini maka ada beberapa spesies vektor penyakit (eq Aedes Agipty), Virus, bakteri, plasmodium menjadi lebih resisten terhadap obat tertentu yang target nya adalah organisme tersebut. Selain itu bisa diprediksi kan bahwa ada beberapa spesies yang secara alamiah akan terseleksi ataupun punah dikarenakan perbuhan ekosistem yang ekstreem ini. hal ini juga akan berdampak perubahan iklim (Climate change)yang bisa berdampak kepada peningkatan kasus penyakit tertentu seperti ISPA (kemarau panjang / kebakaran hutan, DBD Kaitan dengan musim hujan tidak menentu)
Gradasi Lingkungan yang disebabkan oleh pencemaran limbah pada sungai juga berkontribusi pada waterborne diseases dan vector-borne disease. Ditambah pula dengan polusi udara hasil emisi gas-gas pabrik yang tidak terkontrol selanjutnya akan berkontribusi terhadap penyakit-penyakit saluran pernafasan seperti asmaalergicoccidiodomycosis, penyakit jantung dan paru kronis, dan lain-lain.



5. Pengendalian pemanasan global

Konsumsi total bahan bakar fosil di dunia meningkat sebesar 1 persen per-tahun. Langkah-langkah yang dilakukan atau yang sedang diskusikan saat ini tidak ada yang dapat mencegah pemanasan global di masa depan. Tantangan yang ada saat ini adalah mengatasi efek yang timbul sambil melakukan langkah-langkah untuk mencegah semakin berubahnya iklim di masa depan.
Kerusakan yang parah dapat di atasi dengan berbagai cara. Daerah pantai dapat dilindungi dengan dinding dan penghalang untuk mencegah masuknya air laut. Cara lainnya, pemerintah dapat membantu populasi di pantai untuk pindah ke daerah yang lebih tinggi. Beberapa negara, seperti Amerika Serikat, dapat menyelamatkan tumbuhan dan hewan dengan tetap menjaga koridor (jalur) habitatnya, mengosongkan tanah yang belum dibangun dari selatan ke utara. Spesies-spesies dapat secara perlahan-lahan berpindah sepanjang koridor ini untuk menuju ke habitat yang lebih dingin.
Ada dua pendekatan utama untuk memperlambat semakin bertambahnya gas rumah kaca. Pertama, mencegah karbon dioksida dilepas ke atmosfer dengan menyimpan gas tersebut atau komponen karbon-nya di tempat lain. Cara ini disebut carbon sequestration (menghilangkan karbon). Kedua, mengurangi produksi gas rumah kaca.

5.1 Menghilangkan karbon

Cara yang paling mudah untuk menghilangkan karbon dioksida di udara adalah dengan memelihara pepohonan dan menanam pohon lebih banyak lagi. Pohon, terutama yang muda dan cepat pertumbuhannya, menyerap karbon dioksida yang sangat banyak, memecahnya melalui fotosintesis, dan menyimpan karbon dalam kayunya. Di seluruh dunia, tingkat perambahan hutan telah mencapai level yang mengkhawatirkan. Di banyak area, tanaman yang tumbuh kembali sedikit sekali karena tanah kehilangan kesuburannya ketika diubah untuk kegunaan yang lain, seperti untuk lahan pertanian atau pembangunan rumah tinggal. Langkah untuk mengatasi hal ini adalah dengan penghutanan kembali yang berperan dalam mengurangi semakin bertambahnya gas rumah kaca.
Gas karbon dioksida juga dapat dihilangkan secara langsung. Caranya dengan menyuntikkan (menginjeksikan) gas tersebut ke sumur-sumur minyak untuk mendorong agar minyak bumi keluar ke permukaan (lihat Enhanced Oil Recovery). Injeksi juga bisa dilakukan untuk mengisolasi gas ini di bawah tanah seperti dalam sumur minyak, lapisan batubara atau aquifer. Hal ini telah dilakukan di salah satu anjungan pengeboran lepas pantai Norwegiadimana karbon dioksida yang terbawa ke permukaan bersama gas alam ditangkap dan diinjeksikan kembali ke aquifer sehingga tidak dapat kembali ke permukaan.
Salah satu sumber penyumbang karbon dioksida adalah pembakaran bahan bakar fosil. Penggunaan bahan bakar fosil mulai meningkat pesat sejak revolusi industri pada abad ke-18. Pada saat itu, batubara menjadi sumber energi dominan untuk kemudian digantikan oleh minyak bumi pada pertengahan abad ke-19. Pada abad ke-20, energi gas mulai biasa digunakan di dunia sebagai sumber energi. Perubahan tren penggunaan bahan bakar fosil ini sebenarnya secara tidak langsung telah mengurangi jumlah karbon dioksida yang dilepas ke udara, karena gas melepaskan karbon dioksida lebih sedikit bila dibandingkan dengan minyak apalagi bila dibandingkan dengan batubara. Walaupun demikian, penggunaan energi terbaharui dan energi nuklir lebih mengurangi pelepasan karbon dioksida ke udara. Energi nuklir, walaupun kontroversial karena alasan keselamatan dan limbahnya yang berbahaya, tetapi tidak melepas karbon dioksida sama sekali.

Bahaya Merokok Bagi Kesehatan Remaja


Banyak orang khususnya di Indonesia menghisap rokok. Mulai dari yang sudah lama hingga yang baru-baru belajar. Masa  Remaja adalah masa peralihan dalam membentuk kepribadian, remaja sangat dipengaruhi oleh teman dan lingkungan sekitar, remaja yang suka merokok umumnya adalah mereka yang coba-coba atau merasa gengsi dengan teman-temannya yang merokok, dan ajakan dari teman-temannya. Tanpa disadari zat yang dikandung dalam rokok yang selalu dihisap dapat membuat rasa ketagihan dan candu yang sangat sulit untuk berhenti. Seperti narkoba, rokok juga dapat menimbulkan rasa gelisah dan candu bagi orang yang telah melekat zat nikotin di dalam tubuhnya. Akhirnya remaja yang tidak mempunyai uang rela meminjam uang atau nekad mencuri demi untuk menghisap rokok. Adapun penjelasan yang lebih jelas tentang bahaya rokok bagi kesehatan remaja, dewasa, dan lanjut usia adalah sebagai berikut:

A. Pengertian Rokok
Rokok adalah benda berbentuk silinder dengan diameter kira-kira 10 mm. Cara mengkonsumsi rokok adalah dengan membakar bagian ujungnya lalu menghisap asap rokok dan dikeluarkan kembali lewat mulut atau hidung. Berdasarkan penelitian baik dari dalam maupun luar negeri menjelaskan bahwa rokok adalah benda yang memiliki zat beracun berbahaya yang dapat mengancam kesehatan tubuh serta dapat menyebabkan timbulnya penyakit seperti kanker mulut, radang tenggorokan, sakit paru-paru bahkan berujung pada kematian.

B. Zat Bahan kimia yang terkandung dalam rokok
Dilansir dari (wikipedia.org) Berikut adalah beberapa bahan kimia yang terkandung dalam rokok:
Gambar kandungan Zat berbahaya dalam Rokok
Gambar kandungan Zat berbahaya dalam Rokok

  1. Amonia, dapat ditemukan di mana-mana, tetapi sangat beracun dalam kombinasi dengan unsur-unsur tertentu.
  2. Arsenik, bahan yang terdapat dalam racun tikus. 
  3. Asetilena, merupakan senyawa kimia tak jenuh yang juga merupakan hidrokarbon alkuna yang paling sederhana.
  4. Benzene, juga dikenal sebagai bensol, senyawa kimia organik yang mudah terbakar dan tidak berwarna.
  5. Cadmium, sebuah logam yang sangat beracun dan radioaktif.
  6. Formaldehida, cairan yang sangat beracun yang digunakan untuk mengawetkan mayat.
  7. Hidrogen sianida, racun yang digunakan sebagai fumigan untuk membunuh semut. Zat ini juga digunakan sebagai zat pembuat plastik dan pestisida.
  8. Karbon monoksida, bahan kimia beracun yang ditemukan dalam asap buangan mobil dan motor.
  9. Metanol (alkohol kayu), alkohol yang paling sederhana yang juga dikenal sebagai metil alkohol.
  10. Nikotin, kandungan yang menyebabkan perokok merasa rileks.
  11. Sianida, senyawa kimia yang mengandung kelompok cyano.
  12. Tar, yang terdiri dari lebih dari 4.000 bahan kimia yang mana 60 bahan kimia di antaranya bersifat karsinogenik.
Meskipun demikian, hanya tar dan nikotin saja yang dicantumkan dalam bungkus rokok.

C. Penyakit yang ditimbulkan akibat asap rokok
Merokok tidak hanya memberikan dampak kepada perokok aktif (pelaku), tapi juga memberikan atau membagikan penyakit juga kepada orang di sekitar yang juga terhirup asap rokok. Adapun penyakit yang ditumbulkan rokok adalah sebagai berikut :

Penyakit Kanker:
Kanker pundi kencing
Kanker perut
Kanker usus dan rahim
Kanker mulut
Kanker esofagus
Kanker tekak
Kanker pankreas
Kanker payudara
Kanker paru-paru

Penyakit bukan Kanker:
Penyakit saluran pernafasan kronik
Strok
Pengkroposan tulang (Dikenal dengan osteoporosis)
Penyakit jantung
Kemandulan
Putus haid awal
Melahirkan bayi yang cacat
Keguguran bayi
Bronkitis
Batuk
Penyakit ulser peptik
Emfisima
Otot lemah
Penyakit gusi
Kerosakan mata

D. Cara mencegah agar tidak merokok
Bagi remaja sejak SMP dan SMA sudah mulai menemukan teman-teman yang suka merokok, agar tidak terjerumus oleh teman-teman atau tidak mencoba rokok tersebut inilah cara mencegahnya:
  1. Bacalah buku atau lihat video dampak yang diakibatkan rokok.
  2. Menjauhlah dari orang-orang yang suka merokok.
  3. Bertemanlah dengan orang yang melakukan kegiata positif, seperti olahraga, rajin belajar dan suka membantu orang tua.
  4. Dari pada menabung penyakit lebih baik menabung uang untuk dapat dipergunakan membeli buku dan keperluan sekolah lainnya.
  5. Mintalah pendapat orang tua dari bahaya merokok dan asap rokok untuk memantapkan diri.
  6. Bila ada orang yang mengajak merokok katakan tidak dan berikan penjelasan bahwa merokok dapat merusak tubuh dan banyak menimbulkan penyakit
E. Kesimpulan
Rokok adalah alat yang banyak mudaratnya dan tidak ada keuntungan yang di dapat darinya. Bagi remaja yang masih mencari kemantapan kepribadiannya lebih baik menghidar dari teman-temanya yang suka merokok agar tidak terbujuk untuk mencoba, dan bertemanlah dengan orang-orang yang suka memberikan dampak positif, seperti rajin belajar, dan suka membaca buku. Asap rokok selain merugikan pelaku juga dapat memberikan penyakit bagi orang disekitarnya jadi alangkah baiknya jika kita berhenti merokok atau menjauh dari orang yang merokok agar tidak menghirup asap rokok yang berbahaya ini.

Senin, 13 Februari 2017

Citra Christy
Agnes Tiffani
Akbar Wardani
Lidwina
Trias Syfaurrohmah

Pengertian Konversi Energi

1. Pengantar

a. Energi 
Energi merupakan sesuatu pengertian yang tidak mudah didefinisikan dengan singkat dan tepat. Energi yang bersifat abstrak yang sukar dibuktikan, tetapi dapat dirasakan adanya. Energi atau yang sering disebut tenaga, adalah suatu pengertian yang sering sekali digunakan orang. Kita sering mendengar istilah krisis energi yang bermakna untuk menunjukkan krisis bahan bakar (terutama minyak). Bahan bakar adalah sesuatu yang menyimpan energi, jika dibakar akan diperoleh energi panas yang berguna untuk alat pemanas atau untuk menggerakkan mesin. Energi dalam kehidupan sehari-hari arti gerak, misal seorang anak banyak bergerak dan berlari-lari dikatakan penuh dengan energi. Energi juga dihubungkan dengan kerja. Seseorang yang mampu bekerja keras dikatakan mempunyai energi atau tenaga besar. Jadi boleh dikatakan energi adalah sesuatu kekuatan yang dapat menghasilkan gerak, tenaga, dan kerja.

b. Konversi Energi
Energi dalam pengetahuan teknologi dan fisika dapat  diartikan sebagai kemampuan melakukan kerja. Energi di dalam alam adalah suatu besaran yang kekal (hukum termodinamika pertama). Energi tidak dapat diciptakan dan
tidak dapat dimusnahkan, tetapi dapat dikonversikan/berubah dari bentuk energi yang satu ke bentuk energi yang lain, misalnya pada kompor di dapur, energi yang tersimpan dalam minyak tanah diubah menjadi api. Selanjutnya
jika api digunakan untuk memanaskan air dalam panci, energi berubah bentuk lagi menjadi gerak molekul-molekul air. Perubahan bentuk energi ini disebut konversi.  Sedangkan perpindahan energi disebabkan adanya perbedaan temperatur yang disebut  kalor. Energi juga dapat dipindahkan dari suatu sistem ke sistem yang lain melalui gaya yang mengakibatkan pergeseran posisi benda. Transfer energi ini adalah kemampuan suatu sistem untuk menghasilkan suatu  kerja yang pengaruh/berguna bagi kebutuhan manusia secara positif. Jadi energi adalah suatu kuantitas yang kekal, dapat berubah bentuk, dan dapat pindah dari satu sistem ke sistem yang lain, akan tetapi jumlah keseluruhannya adalah tetap.

c. Sistem Konversi Energi dalam Suatu Sistem
Energi dalam suatu sistem tertentu dapat dirubah menjadi usaha, artinya kalau energi itu dimasukkan ke dalam sistem dan dapat mengembang untuk menghasilkan usaha. Sebagai contoh sistem konversi energi, apabila bahan
bakar bensin (premium) yang dimasukkan ke dalam silinder mesin konversi energi jenis motor pembakaran dalam, misalnya sepeda motor. Energi (C8H18/iso-oktan atau nilai kalor) yang tersimpan sebagai ikatan  atom dalam molekul bensin/premium dilepas pada waktu terjadi pembakaran dalam silinder, hasil pembakaran ini ditransfer menjadi energi panas/kalor. Energi panas yang dihasilkan ini akan mendorong torak/piston yang ada dalam silinder, akibatnya torak/piston akan bergerak. Bergeraknya torak/piston terjadi transformasi energi, yaitu dari energi panas menjadi energi kinetik. Selanjutnya energi kinetik ditransfer menjadi energi mekanik yang
menghasilkan usaha (kerja). Kerja yang merupakan hasil kemampuan dari sistem yang berguna bagi kepentingan manusia, yaitu dapat berpindah dari satu tempat ke tempat lain yang jauh jaraknya.

2. Macam-macam Energi

a. Energi Mekanik
Energi yang tersimpan dalam energi kinetik atau energi potensial dan dapat ditransisi atau transfer untuk menghasilkan usaha/kerja.

b. Energi Listrik
Energi yang berkaitan dengan akumulasi arus elektron dan bentuk transisi atau transfernya adalah aliran elektron melalui konduktor jenis tertentu. Energi listrik dapat disimpan sebagai energi medan elektrostatis dan
merupakan energi yang berkaitan dengan medan listrik akibat terakumulasinya muatan elektron pada pelat-pelat kapasitor. Energi medan listrik ekivalen dengan energi medan elektromagnetis yang sama dengan energi yang berkaitan dengan medan magnet yang timbul akibat aliran elektron melalui kumparan induksi.

c. Energi Kimia
Energi yang keluar sebagai hasil interaksi elektron di mana dua atau lebih atom/molekul berkombinasi sehingga menghasilkan senyawa kimia yang stabil. Energi kimia hanya dapat terjadi  dalam bentuk energi tersimpan. Bila energi dilepas dalam suatu reaksi maka reaksinya disebut reaksi eksotermis yang dinyatakan dalam kJ, BTU, atau kkal. Bila dalam reaksi kimia energinya terserap maka disebut dengan reaksi endotermis. Sumber energi bahan bakar yang sangat penting bagi manusia adalah reaksi kimia eksotermis yang pada umumnya disebut reaksi pembakaran. Reaksi pembakaran melibatkan oksidasi dari bahan bakar fosil.

d. Energi Nuklir
Energi nuklir adalah energi dalam bentuk energi tersimpan yang dapat dilepas akibat interaksi partikel dengan atau di dalam inti atom. Energi ini dilepas sebagai hasil usaha partikel-partikel untuk memperoleh kondisi yang lebih stabil. Satuan yang digunakan adalah juta-an elektron reaksi. Reaksi nuklir dapat terjadi pada peluluhan radioaktif, fisi, dan fusi.

e. Energi Termal (Panas)
Merupakan bentuk energi dasar di mana dalam kata lain adalah semua energi yang dapat dikonversikan secara penuh menjadi energi panas. Sebaliknya, pengonversian dari energi termal ke energi lain dibatasi oleh hukum Thermodinamika II. Bentuk energi transisi dan energi termal adalah energi panas (kalor), dapat pula dalam bentuk energi tersimpan sebagai kalor laten atau kalor sensibel yang berupa entalpi.

3. Sumber-Sumber Energi

a. Pendahuluan
Sumber  energi  merupakan tempat muncul atau timbulnya energi yang dapat dimanfaatkan untuk kehidupan manusia dipermukaan bumi. Sumber energi dapat dibedakan sebagai berikut:
1. Berasal dari bumi (terresterial),
2. Berasal dari luar bumi (extra terresterial),
3. Berdasarkan sifatnya.
Sumber energi dari bumi dapat dikategorikan jenis  renewable atau  nondepleted dan  non-renewable atau depleted energy. Sumber energi yang renewable atau dapat didaur ulang, misalnya kayu, biomassa, biogas. Sumber energi dari luar bumi bersifat tidak habis atau non-depleted energy resource, misalnya energi surya dan energi sinar kosmis. Sedangkan energi yang sifatnya tidak bisa diperbaharui atau dapat habis (non-renewable atau depleted energy) adalah minyak bumi (mineral), baru bara, dan gas alam. Gambar 1. Diagram Klasifikasi Sumber Energi.
Sumber-sumber Energi
Tidak dapat didaur ulang
(Non-Renewable/Depleted Energy)
Dapat didaur ulang
(Renewable/Non-Depleted Energy)
Biomassa Panas Bumi
Terresterial ExtraTerresterial
Nuklir
Biogas Air Angin
Fosil
Terresterial
Tenaga Air Gelombang Laut Pasang Surut Gradien Suhu Matahari Alternatif. Sumber-sumber Energi yang Dapat Habis (Non-Renewable/Depleted Energy Resources) Sumber-sumber energi yang dapat habis dan langka daur ulang yang berasal dari bumi (terresterial) adalah sumber-sumber energi konvesional yang pada umumnya merupakan energi tambang atau energi fosil yang berasal dari perut bumi, seperti minyak bumi, gas, batu bara, dan energi nuklir.
1) Sumber energi fosil
Energi fosil tersimpan dalam bentuk bahan bakar minyak, batu bara, dan gas. Bahan bakar ini berasal dari fosil-fosil yang telah terbenam dalam perut bumi miliyaran tahun yang silam, ada yang mengatakan minyak dan gas berasal dari fosil-fosil binatang laut dan binatang darat, sedangkan batu bara dari fosil-fosil kayu-kayu. Bahan bakar fosil ini diperoleh dengan jalan menambang dari dalam perut bumi, minyak dan gas melalui pengeboran, sedangkan batu bara diperoleh melalui pengalian permukaan atau dalam tanah. Bahan bakar minyak diperkirakan akan habis pada akhir abad ke XXI. Gas alam diprediksi oleh para ahli akan habis kurang lebih 100 tahun lagi, sedangkan cadangan batu bara akan habis lebih kurang 200 sampai 300 tahun yang akan datang. Ketiga jenis bahan bakar fosil tersebut dikategorikan sebagai energi yang kurang akrab lingkungan karena kadar polusinya cukup tinggi. Kadar CO2 semakin meningkat akhir-akhir ini, menyebabkan suhu udara menjadi meningkat, mengakibatkan sebagian es di kutub mencair dan tinggi permukaan laut terus meningkat yang lambat laun akan mengakibatkan banjir besar di kota-kota yang berada di tepi pantai di seluruh dunia.
2) Sumber energi nuklir
Sumber energi ini merupakan sumber energi hasil tambang lainnya yang termasuk jenis logam non-ferro. Energi nuklir dapat dibudidayakan melalui proses fisi dan fusi. Energi nuklir walaupun bersih, tetapi mengandung resiko bahaya radiasi yang dapat mematikan sehingga pengelolaannya harus ekstra hati-hati dan juga memelukan modal yang besar untuk investasi awal.

b. Sumber-sumber Energi yang Dapat Didaur Ulang (Renewable/NonDepleted Energy Resources)
Di sini ada dua jenis energi, yaitu energi yang dapat didaur ulang (renewable energy) dan energi yang tidak habis sepanjang masa (non-depleted energy). Energi yang dapat didaur ulang berasal dari bumi, antara lain biomassa, biogas, kayu bakar, dll. Energi tidak habis sepanjang masa dari bumi (terreterial), panas bumi, air laut, dan angin, sedangkan dari luar bumi, adalah energi matahari/surya.

1) Biomassa
Biomassa adalah proses daur ulang melalui fotosintesis di mana energi surya memegang peranan. Daun menyerap energi surya untuk proses pertumbuhannya dan mengeluarkan gas CO2. Energi surya yang diserap
tumbuh-tumbuhan diproses menjadi energi kimia sebagai energi dalam bentuk tersimpan.Tumbuh-tumbuhan tersebut akan mengeluarkan energi tersimpannya pada proses pengeringan maupun saat dibakar langsung. Dapat pula melalui proses untuk menghasilkan bahan bakar yang cukup potensial, seperti etanol, metana, atau gas lainnya, dan bahan bakar dalam bentuk cair (minyak nabati). Nilai kalor/bakar dari tumbuh-tumbuhan kering dapat mencapai 4800 kkal/kg. Beberapa proses konversi dari biomassa menjadi bahan bakar, adalah melalui:
1. Proses Pirolisa
2. Proses Hidrogasifikasi
3. Proses Hidrogenisasi
4. Proses Distalasi Distrutif
5. Proses Hidrolisa Asam
Bahan bakar hasil dari proses biomassa, dikenal dengan istilah bahan bakar alternatif. Contoh bahan bakar alternatif ini, adalah: 
a) Buah Bitanggul yang bernama latin Umpilum, sebagai salah satu bahan baku membuat energi alternatif. Biji buah bitanggul bisa menghasilkan biodiesel.  Mulanya biji buah Bitanggul dijemur seharian hingga kering. Setelah itu dibungkus dengan kertas saring. Setelah didiamkan  dalam sejam, lalu dimasukkan ke dalam tabung. Setelah itu, biji buah bitanggul yang telah dibungkus dalam kertas diberi cairan Petrolium eter. Air yang menetes dari kertas saring tersebut sudah menjadi biodiesel. Air yang berwarna merah tersebut, lalu diuapkan agar berubah menjadi warna kuning bening agar terlihat seperti solar. "Lima buah Bitanggul dapat menjadi 25 mililiter solar dalam waktu dua jam,"
b) Buah jarak merupakan tanaman yang sudah tidak asing bagi masyarakat  Indonesia. Tanaman ini digunakan sebagai bahan bakar pesawat Jepang saat menjajah Indonesia pada 1942 sampai 1945. Hampir semua bagian tanaman ini bisa dimanfaatkan. Kandungan minyak jarak  mempunyai rendemen minyak (trigliserida) dalam inti biji sekitar 55 persen atau 33 persen dari berat total biji.
c) Jagung menjadi alternatif yang penting sebagai bahan baku pembuatan, ethanol (bahan pencampur BBM). Karenanya, kebutuhan terhadap komoditas ini pada masa mendatang diperkirakan mengalami peningkatan
yang signifikan.Bioetanol (C2H5OH) adalah cairan biokimia dari proses fermentasi gula dari sumber karbohidrat menggunakan bantuan mikroorganisme. Produksi bioethanol ini mencakup 3 (tiga) rangkaian proses, yaitu: Persiapan Bahan baku, Fermentasi, dan Pemurnian.

2) Gas bio (Biogas)
Gas Bio (Biogas), adalah sumber energi yang bersih dan murah. Diproduksi dari kotoran hewan dan sampah busuk melalui proses anaerobik melalui kegiatan mikrobial aorganisme. Gas yang diperoleh mengandung 70 persen gas metan. Suatu sistem gas bio terdiri dari:
1. Tanki pencampur
2. Pencerna (digester)
3. Tanki penyimpan gas4. Pembakar gas
5. Kotoran hewan/sampah busuk sebagai bahan baku
Adapun proses terjadinya (diproduksinya) gas bio tersebut, adalah sebagai berikut: Kotoran hewan (lembu)/sampah busuk dicampur dengan air, dimasukkan ke dalam tanki pencampur, diaduk sampai rata sehingga membentuk lumpur kotoran yang biasa disebut dengan slurry yang kemudian dimasukkan ke dalam digester untuk menghasilkan gas bio. Gas yang terbentuk dikumpulkan dan disimpan dalam tanki penyimpan gas. Suatu estimasi kasar memberikan gambaran bahwa kebutuhan masak-memasak dengan gas bio untuk konsumsi 30 orang, memerlukan 30 m³ gas per hari dengan kebutuhan kotoran binatang ternak seberat 200 kg yang dapat
dihasilkan oleh lebih kurang 40 ekor lembu.

3) Air
Air adalah sumber energi yang dapat didaur ulang yang dapat dibedakan menurut tenaga air (hydropower). Suatu energi air penggerak turbin bergantung kepada energi potensial air pada suatu ketinggian tertentu. Energi potensial air dikonversikan menjadi energi mekanis melalui sebuah turbin yang kemudian dikonversikan kembali ke dalam bentuk energi listrik melalui sebuah generator listrik. Daya keluaran dari pusat listrik tenaga air bergantung dari aliran massa air yang mengalir dan ketinggi jatuhnya air. Indonesia memiliki potensi tenaga air yang cukup besar. Penggunaan potensi tenaga air skala kecil dan menengah mulai dikembangkan dan digalakkan akhir-akhir ini untuk menghasilkan pusat tenaga mini dan mikrohidro di daerah-daerah yang potensi sumber energi airnya tidak terlampau besar. Sumber energi air dapat digolongkan sebagai bagian dari sumber energi surya. Hal ini mengingat keberadaan air berasal dari proses penguapan air laut melalui radiasi sinar matahari. Hasilnya berakumulasi menjadi gumpalan awan tebal yang mengandung uap air untuk kemudian berubah menjadi air hujan. Air hujan ditampung dalam bendungan-bendungan sebagai sumber energi air yang
berpotensial tinggi.

4) Energi gelombang laut
Merupakan sumber energi yang berasal dari gelombang laut yang dikonversikan melalui sistem mekanisme torak yang bekerja maju mundur mengikuti irama gerak gelombang laut. Beberapa sistem energi gelombang laut sedang dikembangkan dan akan menjadi alternatif untuk menghasilkan energi listrik.

5) Energi pasang surut
Sumber energi yang diperoleh dari adanya perbedaan air laut pada saat pasang dan surut. Di dunia ini terdapat daerah-daerah yang mempunyai perbedaan pasang-surut yang cukup signifikan, yaitu lebih dari 10 meter. Selisih
ketinggian tersebut cukup potensial  untuk menggerakkan turbin air berskala besar dengan ketinggian jatuh yang rendah, tetapi dapat menghasilkan tenaga listrik dengan daya besar sampai ratusan megawatt.

6) Energi gradien suhu
Sumber energi yang berasal dari perbedaan suhu air laut di permukaan dan pada ke dalaman laut tertentu. Perbedaan suhu ini dimanfaatkan untuk menghasilkan sistem konversi energi. Gradien suhu air laut yang dikenal dengan istilah  OTEC (Ocean Thermal Energy Conversion). Teknik energi gradien suhu memanfaatkan suhu permukaan air laut yang diperoleh dari panas akibat pancaran matahari, jadi boleh dikatakan bahwa energi gradien suhu sebagai bagian dari energi surya.

7) Energi angin
Merupakan sumber energi yang didapat dari perbedaan tekanan di permukaan bumi sehingga terjadi aliran udara (angin). Perbedaan itu disebabkan adanya radiasi matahari yang memanaskan permukaan bumi, akibatnya terjadi
perbedaan temperatur dan rapat massa udara yang berdampak pada perbedaan tekanan udara. Aliran udara (angin) tersebut dapat dipercepat dengan adanya perputaran bumi pada porosnya dengan kecepatan putaran konstan. 

8) Energi panas bumi
Merupakan energi terresterial yang berlimpah adanya dan dapat dimanfaatkan sebagai pembangkit tenaga listrik  – tenaga panas bumi. Secara alami temperatur bumi meningkat 30°C pada kedalaman setiap kilometer kecuali
yang dekat dengan gunung berapi yang aktif, di mana aliran magma yang panas dapat muncul ke permukaan bumi dengan panas yang mencapai 250°C. Temperatur panas bumi pada kedalaman 25 km dari permukaan bumi dapat mencapai 750°C. Secara ekonomis kedalaman yang ideal untuk eksploitasi sumber panas bumi adalah kurang dari 10 km dengan temperatur kerja 150° - 300°C. Energi panas bumi yang berada lebih kurang 10 km dari permukaan bumi berdasarkan estimasi mampu memberi sistem energi panas dengan kapasitas produksi 200 MW selama 10.000 tahun. Energi panas bumi di daerah Kamojang Jawa Barat berkapasitas 150 MW.

9) Energi surya
Merupakan sumber energi yang berlimpah ruah, bersih, bebas polusi, dan tidak akan habis sepanjang masa. Energi surya adalah energi di luar bumi (extra terresterial energy) yang dapat dimanfaatkan melalui konversi
langsung, seperti pada fotovoltaik dan secara tidak langsung melalui pusat listrik tenaga surya.
  
4. Mesin Konversi Energi

Mesin konversi energi adalah mesin-mesin yang dapat mentranfer suatu energi ke dalam bentuk energi lain. Mesin konversi energi dapat dibagi menjadi tiga kelompok, yaitu:
1. Mesin Konversi Energi Konvensional
Mesin konversi energi konvensional umumnya menggunakan sumber energi konvensional yang tidak terbarui, kecuali untuk turbin hidropower. Mesin konversi energi konvensional dapat diklasifikasi menjadi motor pembakaran, mesin-mesin fluida, dan mesin pendingin. Gambar 2. Skema Klasifikasi Motor Pembakaran.
2. Mesin Konversi Energi Non-konvensional
Mesin-mesin yang memanfaatkan sumber energi  Terrestrial dan Extra Terrterial yang berasal dari alam. Ada beberapa jenis Mesin konversi energi non-konvensional; sistem pembangkit tenaga panas bumi, sistem pembangkit energi surya, pesawat pengkonversi tenaga angin (wind power), pesawat pengkonversi energi termal samudra (OTEC), pesawat pengkonversi energi pasang-surut, sistem pembangkit energi gelombang laut, pembangkit uap energi nuklir, dan pesawat magneto hydro dynamics (MHD).